Predictive Modeling of a Buoyancy-Operated Cooling Tower under Unsaturated Conditions: Adjoint Sensitivity Model and Optimal Best-Estimate Results with Reduced Predicted Uncertainties
نویسندگان
چکیده
Nuclear and other large-scale energy-producing plants must include systems that guarantee the safe discharge of residual heat from the industrial process into the atmosphere. This function is usually performed by one or several cooling towers. The amount of heat released by a cooling tower into the external environment can be quantified by using a numerical simulation model of the physical processes occurring in the respective tower, augmented by experimentally measured data that accounts for external conditions such as outlet air temperature, outlet water temperature, and outlet air relative humidity. The model’s responses of interest depend on many model parameters including correlations, boundary conditions, and material properties. Changes in these model parameters induce changes in the computed quantities of interest (called “model responses”), which are quantified by the sensitivities (i.e., functional derivatives) of the model responses with respect to the model parameters. These sensitivities are computed in this work by applying the general adjoint sensitivity analysis methodology (ASAM) for nonlinear systems. These sensitivities are subsequently used for: (i) Ranking the parameters in their importance to contributing to response uncertainties; (ii) Propagating the uncertainties (covariances) in these model parameters to quantify the uncertainties (covariances) in the model responses; (iii) Performing model validation and predictive modeling. The comprehensive predictive modeling methodology used in this work, which includes assimilation of experimental measurements and calibration of model parameters, is applied to the cooling tower model under unsaturated conditions. The predicted response uncertainties (standard deviations) thus obtained are smaller than both the computed and the measured standards deviations for the respective responses, even for responses where no experimental data were available.
منابع مشابه
An Improved Modular Modeling for Analysis of Closed-Cycle Absorption Cooling Systems
A detailed modular modeling of an absorbent cooling system is presented in this paper. The model including the key components is described in terms of design parameters, inputs, control variables, and outputs. The model is used to simulate the operating conditions for estimating the behavior of individual components and system performance, and to conduct a sensitivity analysis based on the give...
متن کاملA Comprehensive Approach to an Optimum Design and Simulation Model of a Mechanical Draft Wet Cooling Tower
The present paper describes the designing of a thermally and economically optimum mechanical draft counter-flow wet cooling tower. The design model allows the use of a variety of packing materials in the cooling tower toward optimizing heat transfer. Once the optimum packing type is chosen, a compact cooling tower with low fan power consumption is modelled within the known design variables....
متن کاملStudy of Degradation of Dry Cooling Tower Performance under Wind Conditions and Method for Tower Efficiency Enhancement (RESEARCH NOTE)
Wind affects adversely the cooling tower thermal performance. A field investigation was carried out to study the thermal performance of Heller cooling towers under wind conditions, involving measurement of wind velocity and its direction around the cooling tower, and obtaining water flow rates and temperatures at the cooling tower inlet and outlet. Results show that air suction at the tower top...
متن کاملآنالیز انرژی و اکسرژی یک برج سرمایش-رطوبتزنی گاز همسو بر مبنای نتایج مدلسازی ریاضی و شبیهسازی
Beginning with a discussion of energy and exergy analysis definitions, the presented study provides a descriptive mathematical model for energy and exergy analysis for a co-current gas cooling tower. For this purpose using conservation laws of mass, energy and momentum, the variation of temperature and enthalpy of gas and liquid streams are predicted along the tower length and are used in order...
متن کاملNumerical and Analytical Study of Natural Dry Cooling Tower in a Steam Power Plant
Design of a natural dry cooling tower has been accomplished in two sections: the design of heat exchangers and the numerical solution of flow through the tower. Heat exchanger (Heller type) has been simulated thermodynamically and then coupled with a computer program, which calculated the turbulent natural convection flow through the tower. The computer program developed for this purpose can be...
متن کامل